Problem-a-day Study Guide

Friday

Prove the following statement form is a tautology using a truth table.

$$
((P \Rightarrow Q) \wedge(R \Rightarrow S) \wedge(P \vee R)) \Rightarrow(Q \vee S)
$$

Saturday

Prove the following statement

$$
\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x y+y=7)
$$

Sunday
Prove that $\sqrt{17}$ is irrational.

Monday

Prove that $(A \times B) \cap(B \times A) \subseteq(A \cap B) \times(A \cap B)$

Tuesday

Let I be an arbitrary index set and A_{i} sets indexed by I. Prove or disprove:

$$
\left(\bigcup_{i \in I} A_{i}\right)-B=\bigcup_{i \in I}\left(A_{i}-B\right)
$$

Wednesday

Use induction to prove that:

$$
\sum_{m=1}^{n} \frac{1}{(2 m-1)(2 m+1)}=\frac{n}{2 n+1}
$$

Thursday

Define a relation R on \mathbb{Z}^{2} via $(a, b) R(x, y)$ if and only if $a \equiv_{4} x$ and $b \equiv_{5} y$. Prove or disprove that R is an equivalence relation.

Friday

Solve $17 x^{2}+4 \equiv 32 \bmod 50$

Saturday

Show that the function f, below, is one-to-one.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{2} \\
x & \rightarrow\left(x^{2}, x^{3}\right)
\end{aligned}
$$

Sunday

The function f, below, is not invertible. Define the largest possible restriction, $g:=\left.f\right|_{S}$ such that g is invertible. Then find the rule that defines g.

